Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 43 (2006) 279-294

Spectral element based model for wave propagation analysis
in multi-wall carbon nanotubes

A. Chakraborty ®, M.S. Sivakumar °, S. Gopalakrishnan **

& Department of Aerospace Engineering Indian Institute of Science, Bangalore 560 012, India
° Department of Applied Mechanics, Indian Institute of Technology, Chennai 600 036, India

Received 26 August 2004; received in revised form 14 March 2005
Available online 21 April 2005

Abstract

A spectrally formulated finite element is developed to study elastic waves in carbon nanotubes (CNT), where the
frequency content of the exciting signal is at terahertz level. A multi-walled nanotube (MWNT) is modelled as an
assemblage of Euler—Bernoulli beams connected throughout their length by distributed springs, whose stiffness is gov-
erned by the van der Waals force acting between the nanotubes. The spectral element is developed using the recently
developed formulation strategy based on the solution of polynomial eigenvalue problem (PEP). A single element can
model a MWNT with any number of walls. Studies are carried out to investigate the effect of the number of walls
on the spectrum and dispersion relation. Effect of the number of walls on the frequency response function is investi-
gated. Response of MWNT for terahertz level loading is analyzed for broad-band shear pulse.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Starting from their discovery in 1991, carbon nanotubes (CNTs) are continuously subjected to a great
deal of theoretical and experimental attention (Tomanek and Enbody, 2000). By virtue of their special sym-
metric structures, CNTs possess extraordinary mechanical properties, such as extremely high specific
strength, specific stiffness, resilience and enormous electrical and thermal conductivities (Tersoff and Ruoff,
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1994, Yakobson et al., 1996a, Treacy et al., 1996, Halicioglu, 1998, Harris, 1999, Govindjee and Sackman,
1999, Yoon et al., 2003a). These points, together with other distinctive physical properties, result in many
prospective applications, such as strong, light and high toughness fibers for nanocomposites, parts of nano-
devices, hydrogen storage (high frequency) micromechanical oscillator, etc.(Iijima, 1991, Dresselhaus and
Avouris, 2001, Avouris et al., 1999, Yang et al., 2002, Zheng and Jiang, 2002). However, to exploit these
excellent properties for the benefit of mechanical applications, it is necessary to have the fundamental
understanding of the nanostructured materials.

Besides an impressive experimental work on CNTs, many researchers have pursued the analysis of car-
bon nanotubes by theoretical modeling (Harris, 1999, Saito et al., 1998). There are two major approaches in
the theoretical modeling of CNTs. One is the atomistic modeling and the major techniques include classical
molecular dynamics (MD) (Iijima et al., 1996, Yakobson et al., 1997), tight-binding molecular dynamics
(TBMD) (Hernandez et al., 1998) and density functional theory (DFT) (Sanchez-Portal et al., 1999). In
principle, any problem associated with molecular or atomic motions can be simulated by these modeling
techniques. However, due to their huge computational tasks, practical applications of these atomistic
modeling techniques are limited to systems containing a small number of molecules or atoms and are
usually connected to studies of relatively short-lived phenomena, from pico-seconds to nanoseconds.

The other approach is the continuum mechanics modeling. Some researchers have resorted to classical
continuum mechanics for modeling carbon nanotubes. For examples, Tersoff (1992) conducted simple cal-
culations of the energies of fullerenes based on the deformation of a planar graphite sheet, treated as an
elastic continuum, and concluded that the elastic properties of the graphite sheet can be used to predict
the elastic strain energy of fullerenes and nanotubes. Yakobson et al. (1996a,b) noticed the unique features
of fullerenes and developed a continuum shell model, where the analytical expressions for the energy of a
shell in terms of local stresses and deformations were provided. The parameters entering these expressions
were obtained from atomistic simulations. The various deformation modes and critical strains were calcu-
lated analytically and found to be in good agreement with the results of the microscopic studies. Ru
(2000c,d) followed this continuum shell model to investigate buckling of CNTs subjected to axial compres-
sion. This kind of continuum shell models can be used to analyze the static or dynamic mechanical proper-
ties of nanotubes. However, these models neglect the detailed characteristics of nanotube chirality, and are
unable to account for forces acting on the individual atoms. Govindjee and Sackman (1999) used Bernoulli
Euler beam bending theory to investigate the applicability of continuum theory to an atomic system such as
a nanotube. They emphasize that the tube should be broken down in a number of parallel cross-sections,
rather than described as a rigid sheet or rod as had often been assumed. Similarly, Ru (2000a) also observed
that the continuum shell postulates break down once atomistic dimensions are reached. Thus, attempts to
reconcile continuum theory with atomistic simulations (Yakobson et al., 1996a) had to use parameters,
such as the effective thickness of the shell, whose physical origin was itself doubtful. A clear breakdown
of the continuum theory occurs when the tube undergoes plastic deformation, since the continuum model
is insensitive to the chirality of the wrapping index. However, the continuum approximation can be very
valuable and may be the only feasible approach for large and complex systems, but its applicability deserves
further scrutiny.

Continuum elastic beam models have been effectively used to study vibrations (Treacy et al., 1996, Pon-
charal et al., 1999, Yoon et al., 2002, Yoon et al., 2003b) and sound wave propagation (Popov and Doren,
2006, Yoon et al., 2003a) in CNTs. In most previous works, multi-wall nanotubes (MWNTs) have been
modeled as single-Euler-elastic-beam (Treacy et al., 1996, Poncharal et al., 1999, Popov and Doren,
2006), which ignored non-coaxial intertube radial displacements and assumed that the nested tubes of an
MWNT deform coaxially and thus can be described by a single deflection curve.

Recently, several studies have come up that deal with the role of non-coaxial interlayer radial dis-
placements in transverse vibration (Yoon et al., 2002, Yoon et al., 2003b) and wave propagation (Yoon
et al.,, 2003a) in MWNTs using the multiple-Euler-beam model (Ru, 2000b). The results (Yoon et al.,
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2002, Yoon et al., 2003b, Yoon et al., 2003a) showed that non-coaxial intertube vibration and trans-
verse waves of MWNTs will be excited at ultrahigh frequencies (above 1 THz), which would have sub-
stantial effects on both the natural frequencies and the wave speed of MWNTs. In view of growing
interest in terahertz vibrations and waves of nanoscale materials and devices (Dragoman and Drago-
man, 2001, Sirtori, 2002, Jeon and Kim, 2002, Antonelli and Maris, 2002, Knap et al., 2002, Su
et al., 2002, Feurer et al., 2003), it is relevant to systematically study terahertz wave propagation in
individual MWNTs.

Spectral finite element method (SFEM) (Doyle, 1997) is arguably the most suitable technique for study-
ing wave propagation in structural waveguides due to high frequency content loading. As shown in the
study of wave propagation of MWNT (Yoon et al., 2002), the cut-off frequencies appear at tera-Hertz level.
Thus, to have contribution from the higher modes, it is necessary to apply loading with frequency content
in that level. For this kind of loading, the wave propagation analysis by conventional finite element method
(FEM) will prove to be computationally prohibitive, since the element size should be of the order of wave-
length (which is nanometer in the present case). However, this problem is totally absent in the SFEM. In
this case, the governing equation is transformed first in frequency domain using discrete Fourier transform
(DFT). In doing so the governing partial differential equation (PDE) is reduced to a set of ordinary differ-
ential equations (ODE) with constant coefficients, where the time coordinate gives way to the frequency,
which is introduced as a parameter. The resulting ODEs can be solved exactly. The elements are formulated
using the exact solution of the governing ODEs as interpolating polynomials. The use of the exact solution
results in exact mass distribution and in turn, the exact dynamic stiffness matrix. Hence, in absence of any
discontinuity or irregularity in geometry, one element is sufficient to handle a structure of any length. This
feature substantially reduces the size of the global dynamic stiffness matrix to be inverted and the size is
many order smaller than the sizes involved in the conventional FEM. The steps to be followed in SEM
are as follows: first, the exact dynamic stiffness is used to determine the system transfer function (frequency
response function, FRF). The FRF is then convolved with the Fourier coefficients of the load. Next, In-
verse Fast Fourier transform (IFFT) is used to get the time history of the response. Most of the develop-
ments in isotropic one-dimensional structural waveguide are discussed in the primary book by Doyle
(1997).

In the SFEM, in order to obtain the exact solution in the frequency domain, it is necessary to compute
two quantities, called the wavenumbers (wave vectors) and the wave amplitudes. In the initial development
stage of the SFEM, these quantities are solved manually, and finding solutions for higher order waveguides,
e.g., higher order beams, plates and shells, it was impossible to construct the solutions. However, recently
two new methods have been proposed to remove this difficulty. The first method is based on the method of
the companion matrix (to find the wavenumbers) and the Singular Value Decomposition (SVD) technique
(to find the wave amplitudes), which is successfully implemented for graded beams with Poisson’s contrac-
tion (Chakraborty and Gopalakrishnan, 2004). The second method is based on posing the problem as poly-
nomial eigenvalue problem (PEP) (Lancaster, 1969), which is utilized in plate element formulation
(Chakraborty and Gopalakrishnan, in press).

In this work, the Euler—Bernoulli beam model is considered for modeling MWNT. Group speeds are
determined as a function of the number of walls making the MWNT, which facilitates to get deep insight
in the wave propagation response of MWNTs. The present element formulation exploits the PEP method
extensively, which is most suitable in the present case of element formulation as number of walls has been
taken as a parameter in element formulation.

The organization of the paper is as follows. In Section 2, the details of the element formulation is pre-
sented. General methods are presented for element formulation as well as and to obtain the expressions of
cut-off frequencies, spectrum relation and dispersion relation. Section 3 discusses the effect of number of
walls on the spectrum and dispersion relation, on the FRF and the wave propagation response due to ap-
plied tip shear loading.
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2. Mathematical formulation
2.1. Multi-wall beam model

The multiple-elastic beam model for N-walled CNT, based on the Euler—Bernoulli beam theory, is go-
verned by the following set of N-coupled equations

[ ] El 64W1 + y 62W1
cilw, —wy| = —_— —_—
1[W2 1 1 o pAy 2
o'w o*w
cplWpi1t =Wyl = cpilwy — W] = El,——L 4+ pd,—5, p=2...N—1,
ox ot
a4WN 62wN
_CN—I[WN_WN—I] :EIN Ot +,0AN 612 s

where x is the axial coordinate of the beam, # time, w,(x,?) (p = 1,..., N) is the deflection of the pth CNT, J,
and A, are the moment of inertia and the area of the cross-section of the pth tube. Young’s modulus
E =1 TPa (with the effective thickness 0.35 nm) and the mass density p = 1.3 g/cm?. The interaction coef-
ficients ¢, (p = 1,..., N — 1), arising due to van der Waals interaction between any two adjacent layer, can
be estimated approximately as (Yoon et al., 2003a),

_ 400R, erg/cm’

 d=0142nm, p=1,. .. N—1,
r 0.164> P

where R, is the inner radius of the pth wall. The coefficients ¢, have been estimated as the second derivative
of the energy-interlayer spacing relations of two flat monolayers. Hence it does not take the curvature effect
of CNTs into account.

2.2. Computation of wavenumbers and speeds

The spectral formulation begins by assuming the displacement field as a synthesis of plane waves of the
form

N’]
wy(x, 1) = z:fve:’ﬂ“e’l"’"’7 (1)
n=1
where k is the wavenumber, @, is the circular frequency at nth sampling point and j*> = —1. The N, is the

frequency index corresponding to the Nyquist frequency in fast Fourier transform (FFT) and inverse-FFT
(IFFT) used for conversion between time and frequency domain. When Eq. (1) is substituted in the go-
verning equations (GE) the resulting discretized form of the GE becomes

Cl(ﬁiz — 171/1) — (E]1k4 — pAl(J\)z)VNV] = O,
ey(Wpi1 — W,) — o1 (W, — Wpy) — (ELK* — pd,0*)W, =0, p=2...N—1,
—CN—1 (171/}\/ — \/NVNfl) — (EINk4 — pAN(l)z)VNVN = 0,

which can be written in the form of a polynomial eigenvalue problem (PEP) as

(K*Ay+A)vV=Wy=0, v="{w,...,wy} (2)
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where A4 and Ag are N X N matrices given by

A, = diag(El,, p=1,...,N), Ayj=C— oM.
Further the matrices M and C are defined as

M = diag(p4,, p=1,...,N), C=."_(c,),

where .7 is an assembly operator (like the stiffness matrix assembler of a rod element) and the matrix ¢, is
defined as

Cn —Cp
c, = .
—Cp Cn
On solving Eq. (2), the eigenvalues k and the eigenvectors v can be obtained, which will be used in sub-
sequent element formulation. Since, in the PEP, the coefficient matrices of k, k% and k> are zero, we can

minimize the cost of computation by substituting A for k* in Eq. (2) and the solving the PEP as a generalized
eigenvalue problem

A()V = )M(—A4)V

and the desired wavenumbers can be expressed as 1 and 4j times M4 However, the eigenvectors obtained
in this method will be of no consequence and the real eigenvectors need to be computed in a different way.

For a N walled nanotube there are 4N wavenumbers and corresponding N phase speeds (c,) and group
speeds (c,). The phase speeds are defined as w/k and the group speeds are defined as dw/dRe(k), where Re
denotes real part of an imaginary number. Although the phase speeds can be computed directly from the
wavenumbers, it is difficult to compute the group speeds. In this work, they are computed using the char-
acteristic equation (also called the dispersion relation whose roots are the wavenumbers, k), which is given
by

B (k) = det(k*As + Ap) = 0.

These equations are polynomials in k, whose general form is

N

P(k) = Z apk4p7

p=0

where the coefficients a, are dependent on material properties and other than ay, all are functions of . Dif-
ferentiating ¢ (k) with respect to k, and using the definition of the expression for ¢, is

> (4pa k)
Co= """V
Zp:l (apk )
where a) indicates derivative of a, with respect to . While computing the group speed using this expression
it is to be remembered that for Re(k) < 0, the group speed will be zero.

)

2.3. Computation of cut-off frequencies

One characteristic of this multi-wall beam based model is that there are N — 1 frequencies, where the
wavenumber becomes zero, thus rendering the group speed equals to zero and phase speed escapes to infin-
ity. These frequencies are called the cut-off frequencies, whose expression can be obtained by substituting
k =0 in the dispersion relation and solving for k. However, for large N, the problem of root finding of a
polynomial becomes a cumbersome task (even if we use the companion matrix based technique, we have to
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form the related matrices). The problem becomes simple if k = 0 is substituted in the Eq. (2) and the prob-
lem of finding w is identified as another PEP

(C— o™)x =0,

where x is a hypothetical eigenvector of no consequence in our subsequent formulation. For N = 2, there is
one cut-off frequency given by

_ l:cl(Al +A2):| 1/2
‘ pA1A4> ’

which for equal cross-sectional properties reduces to 2¢;/(pA) (as given in Doyle (Doyle, 1997)).

(3)

2.4. Computation of wave amplitudes

For the spectral element formulation, it is essential to know the eigenvectors v of the PEP given in Eq.
(2), which is also known as the wave vectors. This PEP can be solved directly by the method of linearization
for obtaining v or the method of singular value decomposition (SVD) can be adopted. In the first method,
the PEP is converted to a generalized eigenvalue problem in terms of the matrices A4 and A,. The matrices
are constructed in the following way. If the PEP is posed as

PD)x=(AAr+2A 4+ A + A)x =0, A, eC™™

then the problem is linearized to

Az =/Bz, A,BcC™™ (4)
where
0 | 0o .- 0 I
0 I 0 I
A= : ,B=
: : oo I I
—Ay —A; A, - —A,, —Ay

and the relation between x and z is given by z = (xT,Ax",.. ., A 'xT)T. B!A is a block companion matrix

of the PEP. The generalized eigenvalue problem of Eq. (4) can be solved by the QZ algorithm, iterative
method, Jacobi-Davidson method or the rational Krylov method. Each one of these has its own advanta-
ges and deficiencies, however, the QZ algorithm is the most powerful method for small to moderate sized
problems and hence for the present problem, as the order of the matrices A and B is not large ({ =4,
m = N). The computation can be performed by the economic and efficient subroutines available in
LAPACK (xGGEV and xGGES group).

In the second method, it is noted that v are the elements of the null space of the matrix W (which has
nontrivial elements as the matrix is singular). In the SVD, W is factorized as W = U SV¥, where S is a dia-
gonal matrix containing the singular values. Since, W is singular, there will be zero diagonal elements in S
and the columns of V correspond to the zero singular values are the elements of the null space of W (actu-
ally they form a basis for the null space). The SVD can be performed by the LAPACK subroutines
(xGESVD group).

The wave vectors (eigenvectors) form the matrix of wave amplitudes which is a matrix of size N X 4N.
For N =2 and equal cross-sectional properties, the wave amplitude matrix R is given in closed form as

11 1 1 1 1 1 1

R= ,
11 -1 -1 11 -1 -1
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where the order of wavenumbers are as ki, jki, k», jk» (which are the forward moving waves) and their ne-
gative counterparts (which are the backward moving waves). Once the wave matrix is prepared, the total
solution is obtained by taking a linear combination of all the 4N solutions as

4N
va(xa CO,,) = ZRmne_jk"xam m = 1a~-~aNa (5)
n=1

where a, are the constants to be determined. There are two elements that can be prepared using this
solution.

2.5. Finite length spectral element

For this element, the solution given in Eq. (5) is taken as a whole, i.e., both the forward and backward
moving wavenumbers are considered. The unknowns, «, are to be replaced by the nodal variables, which
are the transverse displacement and rotation for each wall. Thus, each node has 2N degrees of freedom
(dofs) and the two noded element has 4N dofs (see Fig. 1c). Since, it is the Euler—Bernoulli theory, the rota-
tion is given in terms of derivative of the transverse displacement w,,. The nodal variables of the first and
second node are arranged as {wy,0i,...,wy, 0y} and they are collectively referred as u; and u,. Using Eq.
(5), the relation between nodal displacement # and the constants a = a,, are expressed as

ﬁ:{::}:Tlay (6)

where T is a 4N X 4N matrix. As an example, for N = 2, the T, is given as

Ry Ry Rig ]
—jk1R11 —jkaR1> —JjkgRig
Ry Ry Rog
T, - —jk1R —jk2R2 —JkgRag
Rye Rie; Rises
—jkiRier  —jkaRpzer —JksRses
Rye; Rye Ryseg
L —jkiRyier  —jkaRyer —JkgRyges |

| |
/l}‘ 6.6, ... 0.

172 N

{wq, Wy, ..., Wi}

(a) (c)

[ 1 | -I-Z:Z
s Toe. o
EEEEE s

() v (d)

Fig. 1. Spectral element model for MWNT: (a) 3-wall CNT; (b) its beam model; (c) finite length spectral element and (d) semi-infinite
spectral element.
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where e; = exp(—jk;L). Next, the relation between the nodal displacements and forces needs to be estab-
lished. The nodal forces are the shear force (7)) and bending moment (M) acting at transverse and rota-
tional dof, respectively. At each node there are N shear forces and N bending moments, which are
related to the displacement field by the relation

R o
M, =EI,"22 vy, = —E," "

pax27 pﬁ,pZI,...7N.

Using the above relationship, the nodal forces f; and f, are evaluated at the nodes at x=0 and x =L,
respectively, as

fi = {_V1(0)7_Ml(o)a"'a_VN(O)v_MN(O)}v

fo = {Vi(L),Mi(L),.... VN(L),My(L)},

which are related to the constants a by the relation

o {:} T (7)

Combining Egs. 6 and 7, the relation between the nodal forces and nodal displacements is
f=T,T,'a = Ka, (8)

where K is the dynamic stiffness matrix of size 4N x 4N. This matrix exactly relates the nodal forces with
nodal displacements at frequency w, and thus one element should be sufficient to model a uniform tube
of any length. In the finite precision computing environment, however, there will be restriction on the length
of the element due to the evaluation of e;.

2.6. Semi-infinite spectral element

While forming the total solution, if only the forward propagating components, i.e., all the positive wave-
numbers, are selected, the waveguide will resemble to an infinite structure, which carries no reflection from
the other boundary (see Fig. 1d). This element is also called throw-off element as it acts as a conduit for
throwing away energy from the structure. The element is useful in modeling large structure and to introduce
artificial damping. The displacement field for this element is

2N
‘;{/W (x7 wn) - Z Rmneﬂk”xan, m = 1, e ,N, (9)
n=1

which can be used readily to establish the relation between the nodal displacements and forces as
ii:ul :Tla, f:fl :TQZL f] :Tszlul,

where all the matrices are now of size 2N x 2N.

3. Numerical examples

In this section, the efficiency of the developed spectral element is demonstrated. A broad-band pulse
loading is applied to study the wave propagation in MWNT. However, before going into the details of
the wave propagation simulation, the spectrum and dispersion relation of MWNT is studied for different
N and the wave characteristics are discussed in detail.
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For all the subsequent numerical examples, MWNT are taken with Young’s modulus E = 1 TPa, shear
modulus G = 0.4 TPa and density p = 1300 kg/m>. The innermost radius of the tube is taken as 5 nm and
each tube is 0.35 nm thick. The van der Waals force interaction coefficient for the first wall becomes
0.62 TPa. This geometric and material properties result in waveforms and wave characteristics, which
are given in the following sections.

3.1. Spectrum and dispersion relation

The wavenumber, phase speed and group speed variation for N = 3 are plotted in Figs. 2-4, respectively.
As previously mentioned, there are two cut-off frequencies, one at 1.014 and another at 1.757 THz. At these
frequencies, the wavenumber becomes zero and corresponding phase speed becomes infinite and group
speed zero. However, before the cut-off frequencies, the wavenumbers (k, and k3) have real as well as ima-
ginary part, which indicates that there are propagating component of these modes. Due to the presence of
the imaginary part, these waves will, however, attenuate while propagating. Thus, these waves are the so
called inhomogeneous waves. Thus, there are nonzero phase and group speeds before the cut-off
frequencies.

For N = 10, the spectrum relation and phase speed variation are given in Figs. 5 and 6, respectively. The
characteristic remains same as before, where now appear nine cut-off frequencies. The minimum of them is
at 0.2886 THz and the maximum is at 1.891 THz. Thus, it becomes apparent, even for this many number of
tubes, there is no great variation in the maximum cut-off frequency. It suggests that there may exist an
upper bound to the range of cut-off frequencies and similarly a lower bound. To study this aspect, the num-
ber of walls N is varied from 2 to 100 and for these values the maximum and the minimum cut-off frequen-
cies are plotted in Fig. 7. The figure suggests that, indeed there are an upper and lower bound of the cut-off
frequencies, which, for this particular material and geometric parameters are at 1.891 THz and 0.0169 THz.

0.6

Wavenumber [1/nm]

_03 L L L L L
0 0.5 1 1.5 2 25 3 35 4

Frequency (THz)

Fig. 2. Wavenumber variation for N = 3.
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Fig. 3. Phase speed variation for N = 3.
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Fig. 4. Group speed variation for N = 3.

Since there is no appreciable difference in cut-off frequencies with wall numbers, an MWNT can be
approximated by a double-wall nanotube (DWNT), where the effective inner radius of the DWNT can
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Fig. 5. Wavenumber variation for N = 10.
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Fig. 6. Phase speed variation for N = 10.
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Fig. 7. Variation of the maximum and minimum cut-off frequencies with N.

be obtained from the magnitudes of the maximum and minimum cut-off frequencies. For example, in the
present case, for a identical DWNT, the inner radius will be 1.737 nm, which is obtained using the maxi-
mum cut-off frequency and Eq. (3).

3.2. Variation of frequency response function (FRF)

Before considering any particular loading it is expedient to study the FRF for some particular loading
and dof. To this end a cantilever MWNT of length 250 nm is considered. The tube is impacted at the free
end in the transverse direction equally in all the transverse dof. The FRF of the transverse velocity (corre-
sponding to wy) is plotted in Fig. 8 for N varying from 1 to 3. The FRF clearly shows how the natural fre-
quencies shift with increasing number of tubes, which is evident since the stiffness of the structure increases.

Similarly, for an applied moment at the free end, the FRF of the rotational velocity (corresponding to
01) shows similar characteristics, which is shown in Fig. 9.

3.3. Effect of broad-band pulse loading

Once the characteristics of the waves are known, real time data can be obtained by the application of
small duration loading of suitable frequency content. A broad-band pulse is considered with a frequency
content of around 2.1 THz (see Fig. 10), which is above the highest cut-off frequency for any N. The time
domain data of the loading is shown in the inset. As the figure suggests, the load starts at 2 ps and com-
pletes by 3 ps within which it attains a maximum magnitude of unity. This load is applied at the free
end of a cantilever MWNT and the responses are measured at the tip. The load is equally distributed at
all the tubes so that the total load is always 1 nN.

The transverse velocity history at the tip of the beam is shown in Fig. 11 for different wall numbers. The
initial peak is the instantaneous effect of the loading, whereas, the oscillations at the later part is the reflec-
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tion from the fixed end. As the figure suggests, with increasing N, the overall stiffness increases considerably

and group speed decreases as evident from the decreasing magnitude and arrival time of the boundary
reflections.
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4. Conclusion

A new spectral element is formulated, which can effectively model MWNTs. The element can have any
number of walls and the essential wave propagation characteristics, in terms of cut-off frequencies, group
speed variation etc. are inbuilt in the element formulation. The formulation also reveals the effect of the
number of walls on the wavenumber, phase speed and group speed variation. It is found that a N wall
MWNT will have N — 1 cut-off frequencies. More importantly, the maximum and minimum values of these
frequencies are independent of the number of layers. The study of FRF shows that with increasing wall
number, the natural frequencies increase and the effect is more pronounced in the higher modes. Response
of MWNT for point shear loading clearly shows the effect of wall number in terms of high stiffness and low
group speed.

References

Antonelli, G., Maris, H., 2002. Picosecond ultrasonics study of the vibrational modes of a nanostructure. J. Appl. Phys. 91, 3261-3267.

Avouris, P., Hertel, T., Martel, R., Schmidt, T.H.R.H.S., Walkup, R., 1999. Carbon nanotubes: nanomechanics, manipulation, and
electronic devices. Appl. Surf. Sci. 1999, 201-209.

Chakraborty, A., Gopalakrishnan, S., 2004. A higher order spectral element for wave propagation analysis in functionally graded
materials. Acta Mech. 172 (1-2), 17-43.

Chakraborty, A., Gopalakrishnan, S., in press. A spectrally formulated plate element for wave propagation analysis in anisotropic
material. Comput. Methods Appl. Mech. Eng.

Doyle, J.F., 1997. Wave Propagation in Structures. Springer, Berlin.

Dragoman, D., Dragoman, M., 2001. Micro/nano-optoelectromechanical systems. Prog Quant Electron 25, 229-290.

Dresselhaus, M.S.G.D., Avouris, P., 2001. Carbon nanotubes. Top. Appl. Phys. 80, 287-329.

Feurer, T., Vaughan, J., Nelson, K., 2003. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374.

Govindjee, S., Sackman, J., 1999. On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun.
110 (4), 227-230.

Halicioglu, T., 1998. Stress calculation for carbon nanotubes. Thin Solid Films 312 (1-2), 11-14.

Harris, P., 1999. Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge, MA.

Hernandez, E., Goze, C., Bernier, P., Rubio, A., 1998. Elastic properties of C and B,C,N. composite nanotubes. Phys. Rev. Lett. 80,
4502-4505.

Iijima, S., 1991. Helical microtubes of graphitic carbon. Nature 354, 56-58.

Iijima, S., Brabec, C., Maiti, A., Bernholc, J., 1996. Structural exibility of carbon nanotubes. J. Chem. Phys. 104, 2089-2092.

Jeon, T., Kim, K., 2002. Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl. Phys. Lett. 80, 3403-3405.

Knap, W., Kachorovskii, V., Deng, Y., Rumyantsev, S., Lu, J., Gaska, R., Shur, M., 2002. Nonresonant detection of terahertz
radiation in field effect transistors. J. Appl. Phys. 91, 9346-9353.

Lancaster, P., 1969. Theory of Matrices. Academic Press, New York.

Poncharal, P., Wang, Z., Ugarte, D., de Heer, W., 1999. Electrostatic deflections and electromechanical resonances of carbon
nanotubes. Science 283, 1513-1516.

Popov, V., Doren, V., 2006. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61, 3078-3084.

Ru, C., 2000a. Effective bending stiffness of carbon nanotube. Phys. Rev. B 62 (15), 9973-9976.

Ru, C.Q., 2000b. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962
16967.

Ru, C.Q., 2000c. Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973-9976.

Ru, C.Q., 2000d. Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys. Rev. B 62, 10405-10408.

Saito, S., Dresselhaus, D., Dresselhaus, M., 1998. Physical Properties of Carbon Nanotubes. Imperial College Press, London.

Sanchez-Portal, D., Artacho, E., Soler, J., Rubio, A., Ordejon, P., 1999. Ab initio structural, elastic and vibrational properties of
carbon nanotubes. Phys. Rev. B 59, 12678-12688.

Sirtori, C., 2002. Bridge for the terahertz gap. Nature 417, 132-133.

Su, M., Carter, S., Sherwin, M., Huntington, A., Coldren, L., 2002. Voltage-controlled wavelength conversion by terahertz electro-
optic modulation in double quantum wells. Appl. Phys. Lett. 81, 1564-1566.

Tersoff, J., 1992. Energies of fullerenes. Phys. Rev. B 46, 15546-15549.

Tersoff, J., Ruoff, R., 1994. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73 (5), 676-679.



294 A. Chakraborty et al. | International Journal of Solids and Structures 43 (2006) 279-294

Tomanek, D., Enbody, R., 2000. Science and Applications of Nanotubes. Kluwer/Plenum, New York.

Treacy, M., Ebbesen, T., Gibson, J., 1996. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature
381, 678.

Yakobson, B., Brabec, C., Bernholc, J., 1996a. Nanomechanics of carbon tubes: instabilities beyond linear range. Phys. Rev. Lett. 76,
2511-2514.

Yakobson, B., Brabec, C., Bernholc, J., 1996b. Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic
fracture. J. Comput.-Aid. Mater. Design 3, 173-182.

Yakobson, B., Campbell, M., Brabec, C., Bernholc, J., 1997. High strain rate fracture and C-chain unraveling in carbon nanotubes.
Computat. Mater. Sci. 8, 341-348.

Yang, W., Ma, X., Wang, H., Hong, W., 2002. Advances in nanomechanics. Adv. Mech. 32, 161-174.

Yoon, J., Ru, C., Mioduchowski, A., 2002. Non-coaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev B 66, 233402.

Yoon, J., Ru, C., Mioduchowski, A., 2003a. Sound wave propagation in multiwall carbon nanotubes. J. Appl. Phys. 93 (8), 4801-4806.

Yoon, J., Ru, C., Mioduchowski, A., 2003b. Vibration of embedded multiwall carbon nanotubes. Compos. Sci. Technol. 63, 1533—
1542.

Zheng, Q., Jiang, Q., 2002. Multiwalled carbon nanotubes as gigahertz oscillator. Phys. Rev. Lett. 88, 045503.



	Spectral element based model for wave propagation analysis in multi-wall carbon nanotubes
	Introduction
	Mathematical formulation
	Multi-wall beam model
	Computation of wavenumbers and speeds
	Computation of cut-off frequencies
	Computation of wave amplitudes
	Finite length spectral element
	Semi-infinite spectral element

	Numerical examples
	Spectrum and dispersion relation
	Variation of frequency response function (FRF)
	Effect of broad-band pulse loading

	Conclusion
	References


